Moc3021 как проверить тестером
m.ix, Да не сложнее чем оптрон 817,если знаешь что куда.Посмотри даташит на http://www.datasheetcatalog.com/ он там есть. serega-64, а именно? У меня проверялка есть, да влом с два десятка выпаивать. Потому как это опто управляет мощным симистором. Потому проще подпаятся. Оч. просто, собираем схемку, нажимаем кнопку, на резисторе R2 появляется напруга вторичной обмотки трансформатора, отпускаем — напруга падает близко к нулю. И не забываем смотреть в даташит m.ix, Судя по пдф симистор на 600в и 1а,ну это у них,а у нас как будет вскрытие покажет,то что у тебя на рис. со стороны светодиода можно обычной цешкой засветить,а со стороны симистора подай наше родное 220 через лампу-миньон 15 ватный от холодильника.Хотя со стороны светодиода через 1 ком запит. 5в.Вот и проверишь скока он держит,а штучка неплохая,надо будет заказать с десяток,надоело импульсники искать или мотать. а если я подам +12 и через обычную лампочку или светодиод, так прокатит или просто тиристор не откроется? kapral_82, А как ты так быстро навал схемку? Художественная подготовка или виртуозное владение спланом,блин,мне бы так,а то валяется бумаг не меряно,сканировать не красиво,а в сплане ваять лом великий.
ДОБАВЛЕНО 25/03/2011 16:05
m.ix, лампу надо не более 8 ватт,а так прокатит,симистору похрену че коммутировать,а ток удержания у его оч. минимален,по сути на любую нагрузку расчитан.
Схемку рисуются в лёт. Там надо смотреть особенно по входу, чтобы не превысить ток светодиода, иначе спалишь, если ток меньше номинального, то не откроется. На выход только переменку, там внутри zero-cross детектор, включение только при переходе через ноль.Да, и ток через оптопару не более 60 мА, на счет 50. 100 я загнал, ток через светодиод 10 mA. Схему набросал в протеусе
ДОБАВЛЕНО 25/03/2011 14:34
serega-64, 1А это пиковый ток
А постоянка даже лучше .Зажёг первый раз с одной полярностью,а затем поменял в другой.Наглядно покажет,бывает в одну сторону не открывается или больший ток через светодиод требуется. kapral_82, по входу проблем нету а вот с выхода да. из-за сегодняшней беготни, так мои ручёнки до проверки и не добрались m.ix, напряжение низкое чисто из соображений чтоб тебя не долбонуло случаем или фейерверк не сделался, по-любому «на коленках» такую проверку делать будешь
ДОБАВЛЕНО 25/03/2011 23:57
А в чем проблемы по выходу.
ДОБАВЛЕНО 26/03/2011 00:01
нагрузить выходной элемент так, что б не вышел из строя и главное, что б стопудово открылся при минимальном напряжении, что б не вешать 220 в лампу на выход. я двумя тестерами проверяю оптопары. Или слабо удержать двумя руками 4 щупа и сам оптрон? Моя наваяенная схема в части проверки оптосимистора не работает. хез почему. 1Гц включение выкл управление на светодиод опторпары 10Гц смена полярности на тиристор. очучение, что тиристор типа имеет КЗ если оптотиристор отсоединить после подсоединить только тиристорную сторону, то ничего не будет подсоединив светодиод то начинают моргать сдвоенные светодиоды, включенные паралельно. -20 dB
ДОБАВЛЕНО 28/03/2011 20:59 PM
ЗЫ: может, твою схемку сюда приаттачить? А то тема из одного поста со схемой — в одном разделе, а её обсуждение без самой схемы — в другом.
Тебя беспокоит, что мигают ОБА светодиода? Так для симистора так и должно быть. ================================================================= Как она должна работать схема, та что наваял. вх сигнал с частотой 1Гц подающийся на светодиод оптосимистора коммутирует симистор сигналы с частотой 10Гц иными словами включилась оптопара во включенном состоянии на выходе светодиоды должны проморгатся 10 раз Может выходную часть подправить?
в готовой версии стоят 3102 и 3107
сменил выходную часть на верхнюю схему, результат не изменился. в нагрузку включил двигатель, двигатель меняет своё направление при переключении.
ДОБАВЛЕНО 29/03/2011 06:18
отсоединяю часть оптопары со стороны светодиода движок продолжает вращатся.
А, дык у тебя закрывания симистора нет? Ну, повторять схему лениво: более важная самоделка недоделанная лежит, но версию и идейку для поверки этой версии подкину.
В общем, беда такая: тиристоры (и симисторы) закрываются при нулевом токе через них. В то же время, быстродействие симисторов сравнительно низкое, а сигнал — цифровой, то есть по определению — с крутыми фронтами. В общем, нулевого тока через симистор практически нет, есть ток переменной полярности (существование нулевого тока в течение наносекунд для симистора — шутка: всё равно, что и не было такого — недостаточно времени для рассасывания зарядов). Попробуй организовать «ступеньку», «мёртвое время», включив на входе DD6 интегрирующую RC-цепочку. В твоём случае — создав на некоторое время на входах моста состояние 00 или 11 (абсолютно без разницы — в первом случае будут открыты два верхних ключа, во втором — два нижних, в любом случае дифференциальное напряжение будет равно нулю). Время таймаута достаточно буквально в пределах миллисекунд (лучше, конечно, уточнить по даташитам самых тормозных оптронов, но можно и методом высоконаучного тыка).
ЗЫ: и выкинь нафик светодиоды D3 и D4 по основной схеме — информативности от них ноль. Лучше поставь в те же дырки ограничительные резисторы для ограничения выходного тока лог. элементов и базового тока транзисторов (хотя, поскольку у тебя в нагрузке мост из эмиттерных повторителей — особого смысла эти резисторы не имеют, но на соломку мягче падать. в случае чего).
ДОБАВЛЕНО 29/03/2011 20:04 PM
Кста, если версия окажется справедливой, то таким образом, сделав время задержки регулируемым, можно установив в RC цепь переменный резистор, организовать и проверку тиристорных оптронов на быстродействие. Особого смысла это не имеет — во всех схемах подразумевается, что тиристоры — тормоза, но чем чёрт не шутит — вдруг кому-то да пригодится.
-20 dB, я просто тупо пробовал коротить входа ключей и входа оптопары во время работы. Результат был нулевым. Так же во время работы и светодиодную часть оптопары поднимал.
симисторная оптопара была новая и так же старая, на результат это ни как не сказывалось.
-20 dB
ДОБАВЛЕНО 29/03/2011 23:52 PM
Поставь последовательно с входом DD6 резючок ом эдак на 100, и непосредственно вход прижми к общему проводу кондёрчиком 10. 47 нФ. Это так, навскидку, без расчётов, но ИМХО (если в этом дело) даже для закрытия самого тугодумного силового тиристора должно хватить, не то, что для симистора оптрона.
Управление мощной нагрузкой постоянного тока – мос3041 схема включения
Оптосимисторы относится к виду оптронов с отличными электрическими параметрами. Они создают крайне надежную гальваническую развязку, выдерживающую напряжение порядка 7,5кВ, имеющуюся между подключенной управляемой нагрузкой и схемой управления.
Данные радиокомпоненты построены из арсенид-галлиевого ИК светодиода, имеющего связь с кремниевым двухканальным переключателем. В свою очередь этот переключатель может иметь в своем составе отпирающий элемент, который включается в момент перехода через ноль питающего переменного напряжения.
Оптосимисторы необычно полезны при осуществлении контроля за более мощными симисторами. Аналогичные оптосимисторы были спроектированы для реализации связи между нагрузкой, которая питается переменным напряжением 220 вольт и логикой с низким уровнем напряжения.
Оптосимистор, как правило, выпускаются в компактном DIP-корпусе, имеющий шесть контактов. Его внутренняя схема, параметры, а так же распиновка, показаны ниже.
Достоинства и недостатки
Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания. Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.
Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).
Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.
Как сделать ТТР своими руками?
Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.
Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие
Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.
Электронные компоненты для сборки схемы
Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:
- Оптопара типа МОС3083.
- Симистор типа ВТ139-800.
- Транзистор серии КТ209.
- Резисторы, стабилитрон, светодиод.
Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:
Принципиальная схема маломощного твердотельного реле для сборки своими руками. Небольшое количество деталей и простой навесной монтаж позволяют спаять схему без труда
Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.
А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.
Проверка собранной схемы на работоспособность
Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.
Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт
Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».
Устройство монолитного корпуса
Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.
Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем
Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.
На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.
Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.
Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию. Только так обеспечивается качественный теплоотвод и надёжность работы
Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.
Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.
Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки
Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).
Приготовление компаунда и заливка корпуса
Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:
- Эпоксидная смола без отвердителя.
- Порошок алебастра.
Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.
Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.
Так выглядит готовый экземпляр твердотельного реле, собранного своими руками. Несколько необычно и не очень презентабельно, но достаточно надёжно
Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.
По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.
Схема подключения активной нагрузки к оптосимистору
В этой схеме имеется два компонента, которые необходимо вычислить, но фактически подобные расчеты параметров выполняются не всегда. Но все, же приведем эти расчеты параметров для информации.
Расчет параметра резистора RD . Вычисление сопротивления данного резистора влияет от наименьшего прямого тока ИК светодиода, обеспечивающего открытие симистора. Таким образом,
Допустим, для схемы с транзисторным контролем (которое применяется довольно часто в схемах регуляторов температуры), имеющим питания 12В и напряжение на открытом транзисторе (Uкэ) 0,3 В; VDD = 11,7 B и следовательно диапазон If приблизительно равен 15мА для MOC3041.
Необходимо сделать If = 20 мА с учетом понижения эффективности свечения светодиода в течении срока службы (добавить 5 мА) получаем:
Практические примеры схем на полевых транзисторах
RD=(11,7В — 1,5В)/0,02А = 510 Ом.
Расчет параметра сопротивления R . Управляющий электрод оптосимистора может выдержать определенный максимальный ток. Увеличение данного параметра выводит из строя оптрон. Следовательно, нужно вычислить сопротивление, чтобы при наибольшем напряжении сети (к примеру, 220 В) ток не был больше максимально допустимого параметра.
Для примера возьмем максимально-допустимый ток в 1А, тогда сопротивление будет равно:
R=220 В * 1,44 / 1 А = 311 Ом.
Нужно иметь в виду, что слишком большое сопротивление данного резистора может оказать нарушение в стабильности включения оптосимистора.
Расчет параметра сопротивления Rg . Резистор Rg подключается, только если электрод симистора имеет повышенную чувствительность. Как правило, сопротивление Rg находится в диапазоне от 100 Ом до 5 кОм. Желательно применять 1 кОм.
В случае если в управляемой нагрузке есть индуктивная составляющая, то необходимо применять другую схему подключения с защитой силового симистора и оптосимистора.
Схема переключения симистора
Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.
- Стабилизатор напряжения без обратной связи
Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .
Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.
Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.
Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.
Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.
Модифицированная цепь переключения симистора
Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.
Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .
Мощный блок питания 0-30 в своими руками
Управление мощной нагрузкой постоянного тока – мос3041 схема включения
Собственно возник такой вопрос. Поски в интернете выдали что-то вроде этого:
Но мне эта схема не понравилась, и вот чего я нарисовал:
Однако, из-за отсутствия опыта возникли сомнения — а правильно ли делать так? В общем покритикуйте.
И вопрос. Поскольку хочется получить более-менее универсальное решение по типу нагрузки, наверно необходимо ставить параллельно симистору RC для комутации индуктивной нагрузки? И ессли это так, то как посчитать это RC, а то в инете методик расчета не нашел, только кучу рекомендаций ставить 100-150 Ом 1Вт и конденсатор 100 нФ?
Не надо изобретать велосипед. Есть оптопары специально для управления симисторами: MOC3021. MOC3023 для фазоимпульсного управления, MOC3041. MOC3043 и MOC3061. MOC3063 с встроенным детектором перехода через 0.
Насколько я понял из даташита, МОС используются как драйверы симисторов, а в качестве симисторов их использовать не стоит? Что касается встроеного детектора. Правильно ли я понимаю, что если, например, я буду таким девайсом пытаться регулировать яркость свечения лампы, то у меня нифига не получится, т.к. симистор будет включаться только в нуле?
Dismon Правильно ли я понимаю, что если, например, я буду таким девайсом пытаться регулировать яркость свечения лампы, то у меня нифига не получится, т.к. симистор будет включаться только в нуле? если есть
встроенный детектор перехода через нуль, то регулировка яркости свечения лампы методом регулировки фазы отпирания тиристора не получится .
Добавление от 25.09.2006 15:38:
Первая схема явно работоспособнее второй, поскольку во второй пытаются открыть симистор положительными
импульсами, так и еще относительно анода Добавление от 25.09.2006 15:40:
еще и 47Ом в управляющей цепи втыкают на. э-э-э, 220В жействующего.
методом регулировки фазы отпирания тиристора не получится.
А каким методом получится?
еще и 47Ом в управляющей цепи втыкают на. э-э-э, 220В жействующего.
Там как бы стабилитрон 5В давать должен.
Dismon А каким методом получится? Если ты ставишь С
детектором нуля, то можешь регулировать ШИМ методом, Следить за отношением числа полных полупериодов открытого состояния симитора к числу полупериодов за время периода ШИМ-генератора. Во, навернул. годится для инерционных нагревателей и новогодней елки. (готовишься к новому году?) короче, сколько-то полупериодов подрят симистор открыт, а сколько-то закрыт. Обычно «регулируют» первое «сколько-то», однако сумма первого и второго «сколько-то» типа остается постоянной.
Если МОС без
детектора нуля, то фазовый регулятор будет работать.
Там как бы стабилитрон 5В давать должен
Ты на схему свою посмотри, если бы ты 47 Ом к стабилитрону воткнул. а то прям на диод.
Добавление от 25.09.2006 16:06:
А про то что все время
плюсом пытаешься открыть симистор подумал?
Да не сЕмя, а сИмметрия. сИмистор. все равно минусом
. Кстати, говорят, первые из них более устойчивы в работе с индуктивной нагрузкой.
Glupen’ Ты на схему свою посмотри, если бы ты 47 Ом к стабилитрону воткнул Упс. Действительно не туда приткнул.
Симисторный ключ
Для гальванической развязки цепей управления и питания лучше использовать оптопару или специальный симисторный драйвер. Например, MOC3023M или MOC3052.
Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот фотосимистор можно использовать для управления мощным симисторным ключом.
В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА, поэтому при подключении к микроконтроллеру, возможно, придётся использовать дополнительный транзисторный ключ.
Встроенный симистор же рассчитан на напряжение до 600 В и ток до 1 А. Этого достаточно для управления мощными бытовыми приборами через второй силовой симистор.
Рассмотрим схему управления резистивной нагрузкой (например, лампой накаливания).
Таким образом, эта оптопара выступает в роли драйвера симистора.
Существуют и драйверы с детектором нуля — например, MOC3061. Они переключаются только в начале периода, что снижает помехи в электросети.
Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же резистора R3 определяется исходя из пикового напряжения в сети питания и отпирающего тока силового симистора. Если взять слишком большое — симистор не откроется, слишком маленькое — ток будет течь напрасно. Резистор может потребоваться мощный.
Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для России, Украины и многих других стран) — это значение действующего напряжения. Пиковое напряжение равно .
«Мягкое» включение мощных нагрузок
В схемах с мощной нагрузкой и большой частотой переключений на смену электромагнитным реле и пускателям пришли силовые полупроводниковые переключатели с оптической развязкой. В настоящее время существуют приборы, позволяющие применять их в системах с непосредственным управлением от логических уровней микросхем типа ТТЛ, ТТЛШ, КМОП и др. Для цепей переменного тока предпочтение отдается микросхемам с включением электронного ключа в момент прохождения напряжения через ноль. Это исключает большие импульсные помехи, возникновение коммутационных скачков напряжения из-за сказового сдвига между током и напряжением, а также снижает требования к сетевым фильтрам или позволяет обойтись без них. Самопроизвольное включение силовых симисторов из-за случайных бросков напряжения при коммутации обмоток электроклапанов или электродвигателей может привести к межфазному замыканию. Для устранения этого применяют шунтирование силовых выводов демпфирующей RC-цепью. При включении мощных нагрузок при малых (близких к нулю) напряжениях существенно уменьшается амплитуда импульсов тока при работе с емкостными нагрузками. Кроме того, симисторы работают в мягком режиме и их надежность резко увеличивается.
Типичными представителями бесконтактных силовых коммутаторов являются оптоизоляторы МОС3031М/32М/ЗЗМ. МОС3041М/ 42М/43М. МОС3061М/62М/63М, МОС3162М/3163М, МОС3081/82/83 [1] (аналогичное описание есть также с логотипом Fairchild Semiconductor), выпускаемые в 6-выводном DlP-корпусе (рис.1). Они состоят из инфракрасного излучающего диода, оптически связанного с детектором двустороннего перехода напряжения через ноль, и выходного оптосимистора. Эти элементы удобны для использования с мощными симисторами, полупроводниковыми реле и другими промышленными элементами управления. Микросхемы, маркировка которых заканчивается на 1. 2 и 3, обеспечивают включение нагрузки при подаче на светодиод тока, соответственно равного 15, 10 и 5 мА. Падение напряжения на инфракрасном светодиоде составляет 3 В. Микросхемы, предпоследняя цифра маркировки которых заканчивается на 3,4,6 и 8. предназначены для коммутации цепей с максимальным напряжением соответственно 250, 400, 600 и 800 В. Максимальная величина импульсного тока коммутации — 1А при продолжительности включения 100 мкс. Максимальный непрерывный ток коммутации — 60 мА. Схема включения микросхем для управления симистором показана на рис.2. Для МОС303Х/МОС304Х/ МОС306Х/МОС308Х сопротивление R1 должно составлять соответственно 180, 360, 360 и 360 Ом. R2 — 1 кОм, 330, 360 и 330 Ом. Выходной ток ИМС может достигать 1 А. но только в момент включения силового симистора VS1. поэтому нельзя использовать этот выход как репейный, нагружая постоянной нагрузкой. К одному выходу может быть подключен только один симистор. Более мощные симисторы могут быть подключены к микросхеме через промежуточные усиливающие симисторы. В таблице приведены рекомендуемые симисторы для непосредственного подключения к приборам. Симисторы должны устанавливаться на радиаторы. Следует учитывать, что рабочие токи, коммутируемые симисторами, зависят от температуры. Устаревшие симисторы типа ТС 161 требуют однополярного сигнала включения и не могут работать от этих nмикросхем. В качестве силовых элементов вместо симисторов можно применять тиристоры, включенные встречно-параллельно (рис.3). Номиналы резисторов выбираются в соответствии с рекомендациями к рис.2, диоды — 1 N4001. В [2] приведены основные типы и параметры модулей российского производства.
Электродвигатели, работающие на постоянном токе
Эти механизмы обладают довольно широким спектром использования:
- вентиляторы компьютерных устройств;
- стартеры транспортных средств;
- мощные дизельные станции;
- зерноуборочные комбайны и т. п.
Магнитное поле статора данных механизмов создается двумя электромагнитами, которые собраны на специальных сердечниках (магнитопроводах). Вокруг них располагаются катушки с обмотками.
Магнитное поле подвижного элемента формируется током, который проходит через щетки коллекторного узла вдоль обмотки, уложенной в пазах якоря. Тему неисправности ротора электродвигателя мы обязательно затронем, но немного позднее.
Транзистор Дарлингтона
Если нагрузка очень мощная, то ток через неё может достигать нескольких ампер. Для мощных транзисторов коэффициент может быть недостаточным. (Тем более, как видно из таблицы, для мощных транзисторов он и так невелик.)
В этом случае можно применять каскад из двух транзисторов. Первый транзистор управляет током, который открывает второй транзистор. Такая схема включения называется схемой Дарлингтона.
В этой схеме коэффициенты двух транзисторов умножаются, что позволяет получить очень большой коэффициент передачи тока.
Для повышения скорости выключения транзисторов можно у каждого соединить эмиттер и базу резистором.
Сопротивления должны быть достаточно большими, чтобы не влиять на ток база — эмиттер. Типичные значения — 5…10 кОм для напряжений 5…12 В.
Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры таких транзисторов приведены в таблице.
Модель | |||
КТ829В | 750 | 8 А | 60 В |
BDX54C | 750 | 8 А | 100 В |
В остальном работа ключа остаётся такой же.
Особенности применения
Оптроны выпускаются в пластмассовых корпусах с шестью выводами. Вывод 1 помечен точкой на корпусе.
Производитель рекомендует включать последовательно с фототиристором в схемах управления силовыми тиристорами резистор 360 Ом для удержания тока через высоковольтную часть оптрона на безопасном уровне. Но эта рекомендация представляется странной, так как оптрон может открываться только, если напряжение вблизи нулевого значения (меньше 20 В или около того). Чтобы обеспечить безопасное значение силы тока потребуется резистор всего в 20 Ом при условии, что время открывания силового тиристора меньше 100 мкс. Ведь после открывания силового тиристора напряжение на оптотиристоре оптрона падает до минимального значения. Для распространенных силовых тиристоров, например, КУ201, КУ202, время открывания составляет 10 — 20 мкс.
Последнее замечание представляется важным, так как позволяет использовать эти оптопары с распространенными силовыми тиристорами, для которых 360 Ом — слишком большое сопротивление, не позволяющее обеспечить открывание силового тиристора в самом начале полуволны с минимальной задержкой. Для силовых тиристоров имеет смысл выбирать этот резистор равным резистору, соединяющему управляющий электрод и катод, который в свою очередь обычно выбирается 50 — 100 Ом.
(читать дальше…) :: (в начало статьи)
1 | 2 |
:: ПоискТехника безопасности :: Помощь
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.
Скажите пожалуйста, можно ли управлять МОС306х питанием 3В или только 5В? Читать ответ…
Схемотехника — тиристорные, динисторные, симисторные, тринисторные схе… Схемотехника тиристорных устройств. Практические примеры. …
Применение полевых транзисторов, МОП, FET, MOSFET. Использование. Схем… Типичные схемы с полевыми транзисторами. Применение МОП….
Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо… Схема импульсного блока питания. Расчет на разные напряжения и токи….
Тиристорное переключение нагрузки, коммутация (включение / выключение)… Применение тиристоров в качестве реле (переключателей) напряжения переменного то…
Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида… Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…
Преобразователь однофазного напряжения в трехфазное. Принцип действия,… Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…
Тиристорный выключатель, переключатель, коммутатор. Тиристор (тринисто… Тиристор в переключательных схемах переменного тока. Схема твердотельного реле. …
Повышающий импульсный преобразователь напряжения, источник питания. Ко… Как сконструировать повышающий импульсный преобразователь. Как выбрать частоту р…
Параметры MOC3061, MOC3062, MOC3063
Низковольтная часть тиристорного оптрона
Максимально допустимое напряжение между входной и выходной частью: 7500 В переменного тока при частоте 50 Гц, время воздействия 1 секунда. Так что данная схема исключает пробой даже в случае очень сильных скачков напряжения в сети.
Максимальное обратное напряжение на светодиоде: 6 В.
Максимальное прямое напряжение: 1.5 В.
Максимальный прямой ток светодиода: 60 мА.
Минимальный ток включения (ток через светодиод, при котором происходит включение оптотиристора): MOC3061 – 15мА, MOC3062 – 10мА, MOC3063 – 5 мА.
Высоковольтная часть тиристорной оптопары
Максимальное напряжение в закрытом состоянии: 600 В.
Импульсный ток: 1 А при длительности меньше 100 мкс.
Максимальное напряжение в открытом состоянии: 3 В.
Максимальный постоянный ток в открытом состоянии: 50 мА.
Ток удержания (минимальный ток, при котором тиристор не закрывается): мкА.
Время включения: 1 мкс. Время выключения 10 мкс. Данные приблизительные, в справочнике не приводятся, получены нами в результате измерения на одном экземпляре.
Напряжение, при котором возможно открытие фототиристора: 5 – 20 В. Этот параметр имеет большой технологический разброс и сильно зависит от тока через светодиод. Если напряжение превышает указанное значение при соответствующем входном токе, то тиристор не открывается. Это происходит за счет работы схемы детектора нуля.
Выбирать режим работы оптопары следует так, чтобы управляющий ток был на 10% – 15% выше минимального тока включения. Тогда включение будет происходить только при минимальном значении напряжения на фототиристоре. Увеличение управляющего тока приводит к рассеиванию дополнительной мощности и увеличению напряжения, при котором возможно включение фототиристора, что нежелательно.
Способы регулирования мощности
Однако, на частоте сети 50 Гц мощные трансформаторы становятся тяжелыми и громоздкими, невозможно плавно регулировать мощность, определенные проблемы возникают при коммутации обмоток.
Другой способ регулирования мощности называется методом фазового регулирования. При этом способе нагрузка подключается к источнику через электронный ключ.
Ключ прерывает цепь питания на определенную долю периода синусоиды переменного тока. Меняя время закрытого состояния ключа, можно регулировать величину мощности, передаваемой в нагрузку и действующее значение напряжения на выходе.
Как он работает и для чего нужен
Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов. В таблице ниже представлены характеристики популярных симисторов:
Таблица характеристик популярных симисторов.
Конструкция и принцип действия
Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод. В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.
Симистор.
Оптосимистор: параметры и схемы подключения
Оптосимисторы относится к виду оптронов с отличными электрическими параметрами. Они создают крайне надежную гальваническую развязку, выдерживающую напряжение порядка 7,5кВ, имеющуюся между подключенной управляемой нагрузкой и схемой управления.
Данные радиокомпоненты построены из арсенид-галлиевого ИК светодиода, имеющего связь с кремниевым двухканальным переключателем. В свою очередь этот переключатель может иметь в своем составе отпирающий элемент, который включается в момент перехода через ноль питающего переменного напряжения.
Оптосимисторы необычно полезны при осуществлении контроля за более мощными симисторами. Аналогичные оптосимисторы были спроектированы для реализации связи между нагрузкой, которая питается переменным напряжением 220 вольт и логикой с низким уровнем напряжения.
Оптосимистор, как правило, выпускаются в компактном DIP-корпусе, имеющий шесть контактов. Его внутренняя схема, параметры, а так же распиновка, показаны ниже.
Электронные ключи
В настоящее время применяются следующие типы:
- Ключи на биполярных транзисторах;
- Ключи на полевых транзисторах;
- Ключи на управляемых диодах — тиристорах;
- Ключи на симметричных управляемых диодах — симисторах.
Рассмотрим подробно каждый из типов:
На транзисторах
Простейшим электронным ключом является биполярный транзистор. Как известно, биполярный транзистор имеет структуру n-p-n или р-n-p с двумя p-n переходами и тремя выводами: эмиттер, база и коллектор.
Если ток базы отсутствует, ток коллектора равен нулю. Транзистор находится в состоянии отсечки. Это соответствует разомкнутому состоянию.
Если в базу подать ток достаточной величины, транзистор войдет в насыщение, и напряжение на коллекторе будет близко к нулю, независимо от тока коллектора. Это соответствует замкнутому состоянию.
До появления полевых транзисторов ключи на биполярных транзисторах были основой всей полупроводниковой схемотехники.
В полевых транзисторах между выводами стока и истока существует проводящий канал n или р типа. К этому каналу через диэлектрический слой окисла подключен управляющий электрод — затвор. Меняя напряжение на затворе, можно воздействовать на ширину проводящего канала и тем самым менять его проводимость. Управляя затвором, можно переводить ключ в открытое и закрытое состояние.
Ключи на полевых транзисторах превосходят ключи на биполярных по быстродействию, поскольку биполярные транзисторы медленно выходят из режима насыщения.
Сегодня все компьютеры, смартфоны и прочие гаджеты собраны на комплиментарных (то есть разнополярных) МОП транзисторах. В быстродействующей силовой электронике также применяются мощные полевые транзисторы.
На тиристорах
Если добавить к структуре биполярного транзистора еще один p-n переход, можно получить прибор с очень интересными свойствами — управляемый диод, или тиристор.
Тиристор — это полупроводниковый прибор со структурой p-n-p-n или n-p-n-p. Он имеет три или реже четыре вывода. Вывод, подключенный к внешнему слою p, называется анод, к внешнему слою n — катод. Управляющий электрод, называемый базой, подключается к одному из внутренних слоев, обычно к тому, который примыкает к катоду. Тиристор может иметь и две базы, но это не принципиально.
Эта структура эквивалентна соединению двух, транзисторов с разным типом проводимости, показанному на рисунке.
Это два транзисторных ключа, включенных навстречу друг другу. База каждого из транзисторов подключена к коллектору другого. Эта схема напоминает триггер — элемент с памятью. Если подать в базу отпирающий ток, то тиристор откроется, но из-за эффекта памяти останется в этом состоянии до тех пор, пока ток через него не снизится практически до нуля.
У тиристора очень необычная вольт-амперная характеристика. Она имеет S — образную форму.
Характеристика показывает зависимость тока через тиристор от напряжения между анодом и катодом при различных значениях тока базы IG. Напряжение Vbo соответствует напряжению включения тиристора. Vbr соответствует напряжению пробоя.
При достаточно большом токе базы тиристор ведет себя как диод. Иногда тиристор называют управляемым диодом, что соответствует его графическому обозначению на схемах. Тиристор проводит ток в одном направлении.
Симисторные оптопары | Техника и Программы
Одна из областей применения оптронов — бесконтактное управление высоковольтными цепями, работающими на переменном или пульсирующем токе. Для этих целей изготавливаются приборы на основе фототиристора (симистор — два фототиристора в одном корпусе). Его структура и работа в схемах аналогична обычным тиристорам (может находиться в одном из двух устойчивых состояний). Кроме непосредственного управления маломощной нагрузкой, такие элементы могут использоваться для запуска (включения) более мощных тиристоров и симисторов.
Основные параметры самых распространенных оптопар этого класса приведены в табл. 8. Некоторые из них имеют встроенную схему управления для обнаружения нуля — ZCC (Zero Crossing Control), которая обеспечивает включение симистора только при переходе фазы питающего напряжения через «ноль». Это подразумевает, что включение коммутатора происходит при напряжении около 5…20 В (в силу физических принципов работы при нуле включить такие элементы невозможно, в отличие от транзисторов).
Таблица 8. Основные параметры симисторных оптопар
Примечание к таблице
UpK — максимально допустимое пиковое напряжение между входом и выходом; URMS — максимальнодопусгимое напряжение изоляции (действующее значение).
Окончаниетабл. 8
Информация по взаимозаменяемости одноканальных сими- сторных оптронов от разных фирм-производителей приведена в табл. 9.
Таблица 9. Варианты замены симисторных оптронов
Основной тип | Полные зарубежные аналоги (отечественный вариант аналога) | Корпус | Особенности выхода |
МОС8Ю | TLP532, TCDT1110, CNY17F-2, PC714V | DIP-6 | |
MOC811 | TLP632, IL2B | DIP-6 | |
MOC3020 | TLP3021, K3020P, BRT12H, OPI3020, MCP3020, GE3020 | DIP-6 | |
MOC3021 | TLP3021, GE3021, ECG3048, OPI3Q21, MCP3021, GE302t | DIP-6 | |
MOC3022 | TLP3022, OPI3022, MCP3022, GE3022, (АОУ163А)________ | DIP-6 | |
MOC3023 | TLP3023, OPI3023, MCP3023, GE3023_ | DIP-6 | |
МОСЗОЗО | TLP3041, ОРТОбЗО | DIP-6 | Есть схема ZCC |
МОСЗОЭ1 | TLP3041, ОРТОбЗО | DIP-6 | Есть схема ZCC |
МОСЗОЭ2 | TLP3042, ОРТОбЗО | DIP-6 | Есть схема ZCC |
MOC3040 | TLP3041, TLP3042, ОРТОбЗО | DIP-6 | Есть схема ZCC |
MOC3041 | TLP3042, ОРТОбЗО | DIP-6 | Есть схема ZCC |
MOC3042 | TLP3042, ОРТОбЗО | DIP-6 | Есть схема ZCC |
MOC3043 | TLP3043, ОРТОбЗО | DIP-6 | Есть схема ZCC |
МОСЗОбО | TLP3061, ОРТОбЗО | DIP-6 | Есть схема ZCC |
M0c3061 | TLP3061, (АОУ179А), ОРТОбЗО | DIP-6 | Есть схема ZCC |
MOC3062 | TLP3062, ОРТОбЗО | DIP-6 | Есть схема ZCC |
МОСЗОбЗ | TLP3063, ОРТОбЗО | DIP-6 | Есть схема ZCC |
Примечание к таблице
Следует учитывать, что возможны замены аналогичных по структуре оптопар, на лучшие по параметрам, например с более высоким рабочим напряжением: МОСЗОбЗ на MOC3083 и т. п.
Когда выходной симистор оптопары находится в открытом состоянии, то максимальное напряжение, которое остается на его выводах, может быть от 1,8 до 3 В (зависит от тока в цепи). При
Рис. 5. Расположение выводов и внутренняя структура симисторных оптопар
этом кратковременный импульсный ток через нагрузку не должен превышать 1 А. Чтобы не повредить входной светодиод, постоянный ток через него не должен превышать 60 мА (падение напряжения на светодиоде не превышает 1,6 В, что справедливо для всех маломощных оптосимисторов).
Полупроводниковая структура симистора
Структура симистора состоит из пластины, состоящей из чередующихся слоев с электропроводностями p- и n- типа и из контактов электродов основного и управляющего действия. Всего в структуре полупроводника содержится пять слоев p- и n-типа. Область между слоями называется p-n-переходом, который обладает нелинейной ВАХ с небольшим сопротивлением в обратном направлении, где минус – это n-слой, а плюс – p-слой и высокое значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжении равном несколько тысяч вольт.
Во время включения симистора в прямом направлении в работу вступает правая половина структуры. Левая область структуры выключена, она считается для тока, с обладанием очень высоким сопротивлением. Характеристики симистора динамического и статического плана при его действии в прямом направлении, при поступлении положительного управляющего сигнала соответствуют аналогичным характеристикам тиристора, работающего в прямом направлении.
По этой схеме к СЭУ прилагается напряжение со знаком плюс, относительно СЭ, а p—n-переходы j2 и j4 подключаются в прямом, а p—n-переходы j1 и j3 – в обратную сторону. Благодаря этому структура может рассматриваться, как структура тиристора, подключенная в обратном направлении, не принимающая участие в работе по пропусканию тока. В этом случае действие прибора определяется при помощи левой части структуры и представляет собой обратно ориентированную p—n—p—n структуру с добавочным пятым слоем n, который граничит со слоем p1.
Использование микросхемы К1182 ПМ1
Для построения тиристорных и симисторных регуляторов выпускается специальная микросхема К1182 ПМ1. На кристалле микросхемы реализована почти законченная схема фазового регулятора мощности.
Два тиристора включены параллельно и навстречу друг другу. Их управляющие входы подключены чрез развязывающие диоды к выходу блока управления. Встроенный диодный мост вырабатывает напряжение питания для блока управления.
На выводы AC1 и AC2 подается напряжение 220 В. К выводам UST1+ и UST2+ подключаются конденсаторы, формирующие задержку включения тиристоров. К выводам С+ и C- подключается элемент управления — переменный резистор или RС цепочка.
Ниже приведены рекомендованные производителем схемы включения маломощных нагрузок непосредственно к микросхеме.
При необходимости подключения мощных нагрузок используются внешние тиристоры или симисторы.
Вариант с двумя тиристорами.
Вариант с симистором.
Микросхема выпускается в трех типах корпусов:
- 16 выводной Power DIP-(12+4);
- 8 выводной DIP-8;
- 8 выводной планарный SO-8.
Собрать симисторный регулятор мощности своими руками может любой радиолюбитель.
Выводы и полезное видео по теме
Этот ролик показывает, как и на базе каких электронных компонентов можно сделать твердотельное реле. Автор доходчиво рассказывает обо всех деталях практики изготовления, с какими он столкнулся лично в процессе производства электронного коммутатора:
Видео о проблеме, с которой можно столкнуться после приобретения однофазного ТТР у продавцов из Китая. Попутно проводит своеобразный обзор устройства прибора коммутации:
Самостоятельное изготовление твердотельных реле – вполне возможное решение, но применительно к изделиям под низковольтную нагрузку, потребляющую относительно малую мощность.
Более мощные и высоковольтные приборы сделать своими руками сложно. Да и обойдётся эта затея по финансам в такую же сумму, какой оценивается заводской экземпляр. Так что в случае надобности проще купить готовый прибор промышленного изготовления.
Если у вас появились вопросы по сборке твердотельного реле, пожалуйста, задайте их в блоке с комментариями, а мы постараемся дать на них предельно понятный ответ. Там же можно поделиться опытом самостоятельного изготовления реле или сообщить ценную информацию по теме статьи.
Схема подключения индуктивной нагрузки к оптосимистору
Сигнал, поступающий от оптосимистора на управляющий электрод симистора, нужен только для его открывания. Но при большой частоте переключения коммутируемого напряжения, возникает большая вероятность спонтанного включения управляемого симистора, даже если отсутствует сигнал управления.
Факторами ложных срабатываний могут быть выбросы напряжения при включении ключа, подключенного к индуктивной нагрузке, импульсные помехи в линиях питания нагрузки. Действенный способ устранения данных неприятных моментов – применение в схеме снабберной (демпфирующей) RC – цепочки, которая подключается параллельно выходу ключевого блока.
Конденсатор в снабберной RC-цепи — металлопленочный с номиналом от 0,01 до 0,1 мкФ, сопротивление резистора составляет 20…500 Ом. Данные параметры элементов необходимо рассматривать исключительно в качестве приблизительных величин.
Ограничения
Подключение кнопки к ардуино
При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.
Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.
Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.
Устойчивость симистора к разрушению при превышении допустимой скорости нарастания тока (dI/dt) зависит от внутреннего сопротивления и индуктивности источника питания и нагрузки. При работе на емкостную нагрузку необходимо внести в цепь соответствующую индуктивность.
Moc3021 как проверить тестером
Как его проверить на предмет работоспособности? (FAQ для лузеров приветствуется)
ЗЫ Заранее благодарен
Дак зачем он управляется с помощью света? я немогу понять что если на него допустим падает свет (внешний источник) он срабатывает а если нет, то не срабатывает
или просто нужен свет для внутренего решения сработк.
Объясните мне природу происхождения данного решения в виде свет + тиристор. А что открыть тиристор, динистор и как там его ще не проще эл. импульсом нежели светом?
Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
Ведущий производитель электрического оборудования компания MORNSUN выпустила серию источников питания на DIN-рейку LI100-20BxxPR3 c выходами на 12, 15, 24 и 48 В. ИП позиционируются для умных домов, а так же используются в составе оборудования для промышленной автоматизации, различных производственных машин, рельсовых систем транспортировки и другого оборудования, работающего в условиях неблагоприятной окружающей среды.
подскажите если я соберу такую схему для проверки оптроника она будет функционировать ?
действительно работает тока не понятно в дашите на EL3021 написано что прямой ток входящий до 60ма — это я так понил максимальный ток через светодиод его и там же в дашите указывается что лед тригер курент 15 ма так какой ток максимальный выдержит светодиод внутри него ? минимум при котором он у меня открылся 4 ма
Простые способы проверки симисторов и тиристоров
Простые способы, позволяющие проверить симистор на исправность. Проверка симисторов и тиристоров мультиметром, батарейкой с лампочкой, специальным тестером.
Назначение и устройство
Симисторы – это полупроводниковые полууправляемые ключи, которые открываются импульсом тока через управляющий электрод. Чтобы его закрыть нужно прервать ток в цепи или приложить обратное напряжение.
По принципу действия они подобны аналогичны тиристорам. Отличаются лишь тем, что симистор представляет собой два тиристора, соединённых встречно-параллельно. Обозначение на схеме вы видите ниже.
По определению они часто используются в релейном режиме – простыми словами работают на «включение» и «отключение», кстати такие реле называются полупроводниковыми.
Отличия от электромеханического следующие — быстродействие на порядки выше, нет контактов, в связи с чем большая долговечность. Главное условие долгой эксплуатации – обеспечить номинальный тепловой режим и нагрузку.
Способы проверки
Для диагностики неисправностей электронной схемы нужно последовательно проверять её элементы. В первую очередь уделяют внимание силовым цепям, а именно всем полупроводниковым ключам. Для их проверки можно воспользоваться одним из способов:
- мультиметром (омметром или прозвонкой);
- батарейкой со светодиодом или лампочкой;
- на стенде.
Для диагностики следует выпаять элемент, потому что при проверке любых компонентов электронных схем на исправность, не выпаивая с платы, есть вероятность неправильных измерений. Например, вы обнаружите короткое замыкание не проверяемого элемента, а соединённых с ним в цепи параллельно.
В любом случае вы можете проверить симистор и тиристор на исправность не выпаивая, а если найдете возможную неисправность – выпаять и провести измерения повторно.
Типовое расположение выводов или как еще это называют — цоколевка, изображена на рисунке ниже. А1 и А2 (иногда T1, T2) – это силовые выводы, через них протекает больший ток в нагрузку, а G (gate) – это управляющий электрод. Цоколевка может отличаться, поэтому проверяйте её в даташите вашего симистора
В режиме проверки диодов на экран выводится падение напряжения между щупами в миливольтах. При этом на щупах тестера есть напряжение, которое обеспечивает протекание тока в измеряемой цепи (как и в режиме Омметра).
Для проверки элемента на пробой коснитесь щупами выводов А1 и А2, если элемент исправен, то на экране появится «1» или 0L, а если пробит – значение близкое к 0. Если между выводами А1 и А2 нет КЗ – проверьте управляющий электрод. Для этого нужно прикоснуться щупами к одному из силовых выводов и управляющему электроду, на экране должно быть низкое значение 80-200.
Чтобы проверить, открывается симистор или нет, можно кратковременно замкнуть его управляющий электрод с одним из выводов мультиметра, так вы подадите на него управляющее напряжение (ток). Алгоритм проверки на примере тиристора вы видите ниже.
После того как вы уберете напряжение с управляющего электрода – симистор может обратно закрыться. Это связано с тем, что через него должен протекать какой-то минимальный ток, для удержания проводящем состоянии. Такое же явление может наблюдаться и в следующих способах проверки.
Тоже самое можно сделать омметром: если элемент пробит – сопротивление будет низким, а если не пробит – будет стремиться к бесконечности.
Такой способ проверки подробно рассмотрен в следующем видео, но учтите, что автор допустил ошибку в формулировке, назвав падение напряжения сопротивлением. В остальном оно очень наглядно.
Если вместо светодиода использовать малогабаритную лампу накаливания от карманного фонаря, то резистор R1 нужно убрать из цепи, если использовать батарейку с малым напряжением — убрать резистор R2 или уменьшить его сопротивление. Использовать можно 3 включенных последовательно пальчиковых батарейки (3х1.5=4.5В) или вовсе — крону (9В). Если вы соберете переносной тестер по этой схеме, можете установить кнопку без фиксации с нормально-разомкнутыми контактами, как это показано на схеме.
Если вы не будете собирать такой прибор, то просто кратковременно касайтесь управляющего электрода проводом, как было показано в способе с мультиметром.
Стоит такое устройство порядка 4-10 долларов на алиэкспресс в зависимости от комплекта поставки (с корпусом или без) и модели (даже самая дешевая – вполне функциональный инструмент домашнего мастера).
Для проверки исправности элемента вам нужно просто вставить его в клеммную колодку и нажать на единственную кнопку. Если компонент определился правильно – значит он исправен. Если вы видите, что на дисплее появилось изображение заведомо другой детали (резистор вместо тиристора, например) – значит он сгоревший
В сети есть масса схем небольших стендов или приборов для проверки симисторов. Их принцип работы ничем не отличается от описанных выше методов. Рассмотрим некоторые из них.
Для проверки симисторов на блоке управления в стиральной машины специалисты советуют использовать схему с лампочкой, не выпаивая деталь с платы.
Кстати, с заменой ключей в стиральной машине-автомат ремонтники сталкиваются довольно часто. В этом случае они отвечают за управление двигателем и регулировку оборотов, как и в пылесосе, а в электрочайнике – в цепи управления ТЭНом.
Еще одну схему проверочного стенда публиковали в одном из выпусков журнала «Радио» и подобную её с зарубежного форума. При проверке на стенде по такой схеме – вы можете проверить в обоих ли направлениях открывается симистор, для этого есть переключатели SA1, SA2 на первой схеме и S1 на второй.
Рекомендуем также посмотреть:
Мы рассмотрели основные способы для диагностики схем с тиристорами и симисторами. Они подходят для всех случаев, неважно где он был установлен в пылесосе, диммере, стиралке или другом приборе. Учтите, что при проверке ключ может самопроизвольно закрываться после снятия управляющего импульса – это связано с особенностью их внутреннего устройства и номинальных рабочих параметров.